

pplied geoscience for our changing Earth

Assessing the feasibility of highdensity subsurface heat extraction in urban areas

Dr Corinna Abesser Dr Jon Busby

BRITISH GEOLOGICAL SURVEY

Background

- UK carbon reduction target: 80% by 2050.
- EU renewable energy target: 12% of heat from renewable sources by 2020
- → Increasing use of subsurface use for heating/ cooling using ground source heat pumps (GSHP)
- More suitable for rural areas (?) but could GSHP heating counterbalance effect of urban heat island ?

Objective:

To test the feasibility of high-density GSHP installations in an urban setting

Closed loop GSHP system

Heating mode

Cold fluid from building circulated through loop in the ground

Warm fluid from ground pumped through heat pump where heat is extracted to supply heating/ hot water

Closed loop GSHP system

Model area

Model area

Area of interest

River

[m]

Is operation of high-density GSHP array for heating domestic properties sustainable?

What is the impact of heat extraction on the systems within the array / on the river?

Google Street View

Heat demand

based on:

- Degree-days (2007 -2015) (base T =15.5 °C)
- Indoor temperature= 20 °C
- Heat loss: U'=0.4 kW/K (1930's 3 bed room, semi)
- Heating season: 1 October 31 May

Heat pump and ground loop design

Coefficient of performance (COP _{HP}):	3.0
Peak load:	3.4 kW
Run hours (per year):	1800
Ground temperature :	12 °C

Thermal conductivity of ground (Chalk): Max heat extraction per unit length BHE*: 34 W/m **Ground loop length:** 100 m

* MCS 022: Ground heat exchanger look-up tables

1.7 W/m/K

Model Runs to test:

- Different heat demand scenarios
- Different gw gradient/ transmissivity/ thermal conductivity values
- Different GSHP arrangements to minimise interactions between systems
- Different heat loss reduction measures to reduce demand

Heat demand scenarios

Maximum heat demand

T distribution after 25 years GSHP operation

peration

Maximum heat demand

Median heat demand

Minimum heat demand

GW flow gradient

Gradient= 0.0025

Gradient= 0

GW flow gradient

Is operation of high density GSHP array sustainable?

- High density heat extraction was found to be sustainable where gw flow enhances heat transport (Peclet numbers > 3)
- Sustainability and heat pump performance improved with increasing flow velocity (GW gradient/ Transmissivity)

What is the impact of heat extraction on systems within the array / on the river?

- Interference between systems occurred, but loss in overall efficiency was small for tested scenarios
- Array impacts on river (150 m downstream from installations) in all scenarios where gw flow is present

Conclusions

- High density GSHP installation in urban can be feasible and sustainable provided that GSHP arrangements and spacing are designed to balances heat extraction requirements and systems interference
- Where gw flow/advection is significant, spread of plume and its impacts on installations/ receptors down gradient must be considered
- Locations of existing GSHP systems are generally not known → recording of GSHP locations by local planning offices (?) recommended to avoid interference between systems/ support sustainable design and operation

Applied geoscience for our changing Earth

Thank you for your attention.

Dr Corinna Abesser Dr Jon Busby

BRITISH GEOLOGICAL SURVEY